
YARR is available on the web and as a PDF. Nicole's post is also helpful.

Introduction
This is a crash course in the Rust programming language. It's written with a
specific audience in mind: software engineers who know how to program in a
high-level language but aren't familiar with lower-level programming and want
to learn to write Rust quickly.

It does not aim to be a comprehensive course, and it's best done with a Rust
buddy who can help you through tricky bits. The aim of this course is to teach
you just enough to pair program so that you can learn by doing with others
after this course.

This course contains exercises which should be done as you go through to
check your understanding, and it also contains exercises which may be done
independently or in a group. We highly encourage pairing for these with
someone who's experienced or a fellow learner. Learning together is highly
effective, especially for new, difficult concepts like those Rust may expose you
to.

Rust has a notoriously difficult learning curve because it forces you at the
language level to deal with concepts that are typically hidden (such as
lifetimes). Struggling with these concepts is expected. When you come out of
this course, these concepts will still be fuzzy and unclear. That's expected. This
course will set you off on your journey, and your understanding and
confidence in these concepts will grow over time.

This is just the beginning.

Let's get started.

https://yarr.fyi/
file:///yarr.pdf
https://ntietz.com/blog/introducing-yet-another-rust-resource-or-yarr/

Contributing, Bug Reports, and
License
Please see the repo for contribution and license information.

Bug reports and feedback may be sent to the discussion mailing list.

https://sr.ht/~ntietz/yet-another-rust-resource/
mailto:~ntietz/yet-another-rust-resource-discuss@lists.sr.ht

Setting Up Your Environment
Before we can move forward to learning Rust, we need to have a working local
environment. There are a lot of online tools to run Rust code, but since the
target here is to start pairing, local is best.

The preferred way to setup your local Rust toolchain is with rustup. Go ahead
and install that, then come back here. You can check if you have it installed by
checking which version it is:

You should see something like this as the output:

If you get an error, try closing your terminal and opening a new one; the
installation adds itself to your path and that doesn't get reloaded
automatically.

The Rust language moves quickly, so we can benefit from a lot of
improvements by using the nightly toolchain instead of stable. Set it as your
default like so:

And then make sure it's up to date:

That's all you need, and you should be up and running now! Let's go take a
look at our first Rust code.

$ rustup --version

rustup 1.25.1 (bb60b1e89 2022-07-12)
info: This is the version for the rustup toolchain manager, not the
rustc compiler.
info: The currently active `rustc` version is `rustc 1.68.0-nightly
(cc47b0699 2023-01-08)`

$ rustup default nightly

$ rustup update

https://rustup.rs/

Rust Analyzer

Before you start writing too much Rust, you will want to also install rust-
analyzer. This is a tool which provides a lot of nice features in your IDE or
editor, like completions and refactoring help. Crucially to me, it also can
display inline types annotations for inferred types, which can greatly aid
understanding of Rust programs.

It's by no means necessary for working with Rust, but if you're going to do any
work with Rust it's an extremely helpful tool.

Instructions on how to configure it are out of scope of this guide, as it will be
different for every editor.

Exercise: Look up instructions for your editor of choice and set it up to
use Rust Analyzer.

https://rust-analyzer.github.io/
https://rust-analyzer.github.io/

Hello World
In the time-worn tradition, our first Rust program will be getting our computer
to greet this wide world of ours.

Let's start by making a directory to work out of1:

For the rest of this course, we'll assume that you're in the ~/yarr directory.

Now let's make our first Rust program. When we installed rustup and the Rust
toolchain, it included a tool called cargo . This is the Swiss army knife for Rust.
It takes care of a lot of things for you, including:

Installing and updating packages
Creating new projects
Running your tests
Executing your binary
Formatting and linting your code
Publishing your library

We'll learn by doing, but feel free to explore the other functions with cargo
help or in the Cargo docs.

To create a new project, you can use cargo new :

If you print out the directory that was created, there are a few files:

$ cd ~
$ mkdir yarr
$ cd yarr

$ cargo new hello_world
Created binary (application) `hello_world` package

https://doc.rust-lang.org/cargo/

Now we can run the program:

And we printed it out!

Whoops, we cheated our way to "hello world" without actually writing the
program! But we know our toolchain works. Let's delete the existing file and
write our own:

Now open src/main.rs as a new file in your editor of choice, and write this
program:

Now when you run it, you should see our new, corrected, greeting:

hello_world/
├── Cargo.toml
└── src
 └── main.rs

$ cd hello_world
$ cargo run
 Compiling hello_world v0.1.0 (/home/ntietz/Code/ntietz/rust-crash-
course/hello_world)
 Finished dev [unoptimized + debuginfo] target(s) in 0.55s
 Running `target/debug/hello_world`
Hello, world!

$ rm src/main.rs

fn main() {
 println!("Ahoy, matey!");
}

$ cargo run
 Compiling hello_world v0.1.0 (/home/ntietz/Code/ntietz/rust-crash-
course/hello_world)
 Finished dev [unoptimized + debuginfo] target(s) in 0.27s
 Running `target/debug/hello_world`
Ahoy, matey!

A few quick notes on the program we wrote, then we'll move on:

This declares the main function, which has no return value here but can
have a return value in some cases; we'll cover that later in Error
Handling.
It does only one thing, which is invoking println! . This looks like a
function, but is a macro. Macros always end in ! , so when you see that
you know it's a macro. You can think of macros as fancy powerful
functions, and use them just like you would use a function. We won't write
our own in this course.

Exercises:

1. Repeat the hello world program from scratch in a new directory,
going by memory as much as possible.

2. Find and read the documentation on println! . What do you find
surprising? What do you find normal?

And now we're ready to move on! Stretch, shake it out, and then move on to
learn about variables, functions, and control flow!

1 If you prefer a different working directory, feel free to do as you wish!

file:///home/nicole/Code/yet-another-rust-resource/book/html/error-handling.html
file:///home/nicole/Code/yet-another-rust-resource/book/html/error-handling.html

Variables
This chapter has a few concepts to cover:

Creating variables
Giving a variable a type
Primitive types

Creating Variables
In Rust, you can create a variable much like you would in other languages:

The base syntax is straightforward: give it a name, give it a value. This creates
an immutable variable. If you try to change it after this, you'll get an error:

If you do this in a file and try to compile it, you'll get a pretty helpful error:

let x = 10;

let x = 10;
x = 11;

error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:3:5
 |
2 | let x = 10;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`
3 | x = 11;
 | ^^^^^^ cannot assign twice to immutable variable

For more information about this error, try `rustc --explain E0384`.

To fix this error, we learn another keyword: mut . This keyword is used to
create mutable variables (or references).

If we run this program instead, it will compile:

A note on mut

The relation between the mut keyword and the concept of mutability is
apparent in its name and in its usage: it allows you to mutate things.

However, this hides another way of thinking about it which is very helpful in
the context of references later on. How do you achieve mutability? By
enforcing exclusive access: when there is one reference to a mutable variable,
there can be no others (but you can use that one multiple times). So a mut
reference is also an exclusive reference. (We'll talk about references later on.)

More on that later in the ownership and references section!

Type Annotations
Rust is a statically typed language. Everything is given a type at compile time.
This does not mean, however, that we need to write types for everything! Like
many modern languages, it employs type inference to figure out what types
things are if you don't say. That's how Rust was able to compile our code up
above without any types on it.

If you use a tool like rust-analyzer, you can see inline type hints. If you use that,
you'll be able to see which types are inferred for a given variable, which is
invaluable.

Sometimes, though, you just have to write the types down yourself! The
compiler can't always figure out what you meant, and it can make it more clear

let mut x = 10;
x = 11;

https://rust-analyzer.github.io/

to other programmers and the compiler what you intended—so if the inferred
type doesn't match what you intended, now that's caught at compile time
rather than run time.

The syntax for type annotations will feel somewhat familiar if you're used to
Python or TypeScript, which have similar syntax. Let's say you're declaring a
string and a 32-bit unsigned integer. You could write:

In a variable initializer, the type annotation is the : <type> portion. There are
a few other places you'll see type annotations, like in functions and closures
and structs. We'll cover those when we get there, but they're all of this form
with a colon and a type.

Primitive Types
Rust has a bunch of primitive types to help you express what you want to
write! The primitives are well documented in the Rust docs, which you can look
to for more details.

Unsigned integers: u8 , u16 , u32 , u64 , u128 , and usize (8-bit through
128-bit numbers, respectively) These can be written with bare literals like
123 , or you can append on the integer type, like 123u8 . usize is a

pointer-sized unsigned integer; on 64-bit systems, this is often a 64-bit
integer, and it's the type you use to index into collections.
Signed integers: i8 , i16 , i32 , i64 , i128 , and isize . These can be
written with bare literals like 456 , or you can append on the integer type,
like 456i32 . isize is a pointer-sized signed integer, which is handy for
representing the difference between two indexes.
Floating point numbers: f32 and f64 . These can be written with bare
literals like 1.2 , or they can be written 1.2f32 or 1.2f64 .
Characters: char is a 4-byte Unicode character. These can be written
with single quotes around them, like 'a' .
Booleans: bool is true or false .

let name: &str = "Captain Blackbeard";
let age: u32 = 35;

https://doc.rust-lang.org/std/primitive/index.html

Strings: str is the primitive type for a string. String handling is

complicated in Rust1, but this is the primitive type, which is a UTF-8
encoded string (or "string slice"). It's usually seen in the reference form,
&str , but more on references later. Since strings are UTF-8 encoded,

characters have variable-width encoding, which complicates accessing
characters at specific indices.
Unit: () is the "unit type". This can be written with a literal () , and it
basically means... nothing. It's an empty, 0-element tuple, and it's the
equivalent of void in other languages.

There are also a couple of other types worth mentioning here which aren't
technically primitives, but are formed from them.

Tuples: (u8, bool) is the type of a two-tuple of an unsigned 8-bit integer
and a boolean. You can make a tuple from as many elements as you
want, practically. A tuple value is of the form (123, true) , which would
have the previous type.
Arrays: an array in Rust is a fixed-size list of values, with the size as part of
its type. The array [0, 1, 2, 3, 4] may have the type [u8; 5] , for
example.

Casting Between Types
Sometimes you have a primitive of one type, but you want it in another type!
This happens often with numbers, where you'll have (say) an 8-bit integer but
need to use a 64-bit integer for something. Rust does not do any implicit
casting for you. You must explicitly say that you want it to happen, which helps
prevent overflow errors.

Casting with the as keyword is straightforward. You take the variable, and say
as <type> for what you want to cast it into. If it can't be done, the compiler will

tell you! You do have to be careful to ensure that if you cast to a smaller size
value, that you won't overflow anything. The behavior you get is well-defined
but may be unexpected.

Here is an examples of a cast:

In this example, we had to cast y so that we could add it to x . If we didn't,
we'd get a compiler error. Try modifying this to remove the cast and see what
error you get. Also try casting x to a u8 and see what you get instead.

Exercises:

1. From memory, try to recall the different primitive types in Rust, and
write them down. How many did you get right? How many did you
miss?

2. Write a program that creates three integers of different types and
multiplies them together. Print the result.

1 Or rather, Rust forces you to acknowledge how complicated strings really are. They're
among the more confusing bits coming in, I find.

let x: i64 = -13;
let y: u8 = 10;
let z = x + (y as i64);

Control Flow
Programs aren't very useful if they just follow a linear path forward. To do
useful things, we need conditional statements and loops! Rust can do this, of
course.

This section ostensibly is about control flow. It's also about Rust as an
expression-oriented language; this is one of the things that makes Rust really
ergonomic, and is also one of the things most confusing if you haven't used a
language like it before! Basically, almost everything in Rust returns a value!
This is super helpful, and different/confusing if you're not used to it.

Also, a note: we'll use println quite a bit through this section in a few forms.
The fmt docs have thorough explanations of all the different ways you can
format output with println. Please refer there if you need any help
understanding the println! usage on this page.

Blocks

Blocks aren't really control flow per se, but since every control flow mechanism
takes a block, here we are.

A block is just a section of code surrounded by curly braces:

There are two main notable things about blocks:

Blocks delimit a scope, so any variables you declare inside a block are
out of scope outside of it; this is super handy for temporary variables.
Blocks return a value, which is precisely the value of the last expression
in the block. If the last expression of the block ends with a semicolon,

{
 println!("I'm in a block!");
}

https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/fmt/

then it's a statement, which returns () , the unit value, so it functionally
has no return value.

Let's see a couple of examples of this and how you'd use it.

Exercise: What do you think this will print when you run it? Try to figure it
out before executing it to test your understanding and intuition!

Since blocks declare a new scope, the msg variable inside the block shadows
the msg variable on the outside, and does not change its value.

Note: Examples here are going to be rather contrived because we're avoiding
things like structs and methods for now, trying to stick to (largely) just the
syntax introduced so far.

Okay, so we saw scope delimiting. Here's an example of a block returning a
value:

Here we end up with legs_on_ship having the value 30 , and the temporary
variables (parrot_legs and human_legs) are freed when the block ends.

let msg = "Hello, world";
{
 // we're in the pirate block now
 let msg = "Ahoy, matey!";
 println!("{msg}");
}
println!("{msg}");

let parrots = 5;
let shipmates = 10;

let legs_on_ship = {
 let parrot_legs = 2 * parrots;
 let human_legs = 2 * shipmates;
 parrot_legs + human_legs
};

What's the real-world use for this usage of blocks? A common use is to do what we
saw in the previous example and use it to constrain the scope of temporary
variables. Doing this inside a block allows you to set things up in a readable
manner without polluting the outer scope. Another common use is to release
resources; you can lock a mutex at the beginning of a block, and when the
block ends it will be released (like with lock: in Python).

Ifs

Blocks are neat, but if-else is how we really get stuff done.

It works how you'd expect from other languages, with a few notable things:

Parentheses around the condition are optional (and usually considered
un-idiomatic)
if-else-expressions return a value! Just like with blocks, this is the value of

the last expression in each branch1.
The branches must be surrounded by curly braces (yes, even if it's just a

single statement2)

Here's a simple one:

And then using it to get back a value. Since Rust doesn't have the
conditional/ternary operator, this is the way you set a value conditionally:

if plunder > 5 {
 println!("A good haul");
} else {
 println!("Just jetsam");
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

This block will print a different greeting depending on whether or not you're a
crew member.

Loops

The final basic control flow constructs for getting stuff done are loops. There
are a few kinds of loops, so we'll just whirlwind through them.

There are three kinds of loops:

loop-expressions
while-expressions
for-expressions

After those, we'll go through an extra: returning values from a loop.

loop expressions

These are the basic infinite loops. You have to exit out of them manually with
the break keyword. Otherwise, they keep going forever.

To have the loop terminate, you have to break. Usually you want that on a
condition:

let is_crew_member = true;
let greeting = if is_crew_member {
 "Ahoy!!! Welcome aboard!"
} else {
 "Yarrrrr get off me ship"
};
println!("{}", greeting);

// Don't do this, it will run forever
loop {
 println!("Wheeeee");
}

while expressions

These work like loop-expressions with the added bonus of having a condition
to halt, so you don't have to manually break out of them. Otherwise, they're
the same: you give a body and it gets run each time until the condition
evaluates to false .

This should behave the same as the loop above. Note that since we run while
the condition is true, we don't have to do an awkward inversion of it to decide
when to break. It's much more convenient.

Of course, you can also use break statements in these. There just usually isn't
as much need to.

for expressions

The for loop in Rust is one of the ways you iterate over an iterable, which is
typically a collection of things or a range ("from 0 to 10"). We'll see an example

let mut count = 0;

loop {
 count += 1;

 println!("iteration {count}");

 if count >= 10 {
 break;
 }
}

let mut count = 0;

while count < 10 {
 count += 1;
 println!("iteration {count}");
}

of both. There will be some syntax you're not familiar with, but we'll come back
to the collections later on.

This behaves the same as above. 0..10 gives us the range from 0 to 10,
excluding the 10. That means we have to do the awkward +1 to get count the
same. We can specify the range as an inclusive range instead to avoid that,
using 1..=10 , which ranges from 1 to 10, including the 10.

Collections of things are similar. Let's see a basic example with an array. We'll
see examples from other collections later on, when we talk about the standard
library.

And like with the other types of loops, you can use break in for loops! You
usually won't need it, but it comes in handy occasionally.

Loop values

We mentioned before that in Rust, most expressions return values. But if you
try to do that with a loop, you're going to see a compiler error:

for count in 0..10 {
 println!("iteration {}", count+1);
}

for count in 1..=10 {
 println!("iteration {count}");
}

for prime in [2, 3, 5, 7, 11] {
 println!("{prime} is prime.");
}

let x = for count in 0..3 {
 count * 2
};

One of the really nice things with Rust is that the compiler messages are often
helpful. (Sometimes, they try to be helpful... Trust yourself over the compiler, it
cannot know your intent!) In this case, it tells us precisely what we need to do:
use the break keyword.

There are two things to unpack here:

The loop body must result in () , so the last statement needs to end in a
semicolon.
If you want the loop to result in a value, you have to emit that value using
the break keyword.

Here's the previous example, but modified to work (and made a little more
interesting):

Oops, another compiler error!

error[E0308]: mismatched types
 --> src/main.rs:4:5
 |
4 | count * 2
 | ^^^^^^^^^ expected `()`, found integer
 |
help: you might have meant to break the loop with this value
 |
4 | break count * 2;
 | +++++ +

For more information about this error, try `rustc --explain E0308`.
error: could not compile `playground` due to previous error

let x = for count in 0..3 {
 if count > 1 {
 break count * 2;
 }
};

See, the problem is that while- and for-expressions are not going to be
guaranteed to have a value, because they may hit their termination before
they hit the break statement.

We can do it with loop though. This one will compile, I promise:

And there you have it: control flow! The first of many things Rust provides to
do useful things.

Exercises:

Compiling playground v0.0.1 (/playground)
error[E0571]: `break` with value from a `for` loop
 --> src/main.rs:5:9
 |
3 | let x = for count in 0..3 {
 | ----------------- you can't `break` with a value in a `for`
loop
4 | if count > 1 {
5 | break count * 2;
 | ^^^^^^^^^^^^^^^ can only break with a value inside `loop`
or breakable block
 |
help: use `break` on its own without a value inside this `for` loop
 |
5 | break;
 | ~~~~~

For more information about this error, try `rustc --explain E0571`.
error: could not compile `playground` due to previous error

let mut count = 0;

let x = loop {
 if count > 1 {
 break count * 2;
 }

 count += 1;
};

1. Write fizz buzz using a while loop.
2. Now write fizz buzz using a for loop.

We'll see you in the next section for functions.

1 If you use it this way, the branches must have matching types. You can't, say, return a
string from one branch and an integer from the other.

2 And thank goodness, too. This helps prevent some infamous bugs with major security
implications, like goto fail.

https://en.wikipedia.org/wiki/Fizz_buzz
https://www.martinfowler.com/articles/testing-culture.html

Just as with control flow, doing useful things is a whole lot easier if you have
functions available. They're there in every major high-level language, and
they're there in Rust as well.

Functions
Functions in Rust are defined with the fn keyword (often pronounced "fun",
or if you're feeling edgy, "effin'") followed by the function name, parameter list,
return type, and function body. That's a few words, so let's just see an example
and break it down.

Let's pretend that for some totally-not-contrived reason, we need a function
which adds 10 to whatever argument we pass in. We give it 5, we want to get
back 15. And let's also pretend we only care about 32-bit unsigned integers.
That function would look something like this:

fn says we're starting a function, and add_10 gives it a name.

Then we have the parameter list. We only have one thing: x: u32 , which says
we'll accept a parameter named x with the type u32 .

The -> u32 is our return type; if you omit it, it's the same as writing -> () , or
returning the unit type (kind of like the return type void in TypeScript or
C/C++).

Then we have the function body. This is a block like we talked about in control
flow. Inside we have two lines. The first creates a variable named value , and
the second returns it implicitly.

fn add_10(x: u32) -> u32 {
 let value = x + 10;
 value
}

file:///home/nicole/Code/yet-another-rust-resource/book/html/control-flow.html
file:///home/nicole/Code/yet-another-rust-resource/book/html/control-flow.html

Examples
Now we have everything we need to do some more more interesting things.
We'll walk through one example here, then you can work through the other
one on your own.

Let's take the classic Fibonacci function. First we create our main function as
every program needs, we also create a stub. We'll just return a dummy value
for now.

Now we need to fill in that function body. It's a straightforward translation
from the algorithm:

And now it should print 55!

Now, one to try on your own. I'll give you the main:

fn main() {
 let x = fibonacci(10);
 println!("{x}");
}

fn fibonacci(n: u32) -> u32 {
 0
}

fn main() {
 let x = fibonacci(10);
 println!("{x}");
}

fn fibonacci(n: u32) -> u32 {
 if n < 2 {
 return n;
 }

 fibonacci(n-1) + fibonacci(n-2)
}

https://en.wikipedia.org/wiki/Fibonacci_number

Now you should define a function named fizzbuzz_up_to which takes a
parameter as a number and does Fizzbuzz. You'll need to use loops and define
at least one function to achieve this!

Exercise: Write fizz buzz using a function, taking a parameter for the max.

Good luck. Come back here when you've completed that.

fn main() {
 fizzbuzz_up_to(100);
}

https://en.wikipedia.org/wiki/Fizz_buzz
https://en.wikipedia.org/wiki/Fizz_buzz

Memory Management
One of the defining characteristics of Rust is that it gives you full control over
memory: it doesn't have a runtime garbage collector, and it doesn't do
reference counting unless you explicitly ask it to. When things get allocated
and deallocated is entirely in your control (but constrained by some safety
rules; you can't deallocate it then use it again).

This means to really get Rust, we have to also really get how memory
management works. There's only a little bit here that's specific to Rust; it's
more of a primer on memory management for those coming from higher level
languages who may not have seen this before, or in a while.

Stack and Heap
The first thing to know is that there are two places memory gets allocated: on
the stack and on the heap. If you're familiar with the data structures, you're
halfway there. The stack is a stack like you're familiar with: things get pushed
on and popped off (but also referenced from the middle of the stack). On the
other hand, the heap is just a big open field of memory (not a heap data
structure) where we can allocate things.

The stack is controlled by the program's execution, comprising call frames
(pushed on for function calls) and local variables of those functions. If
something is on the stack, it's going to only live as long as the function it's
inside. That's why you can't return references to things that are local variables,
because they'll get deallocated when the function ends and its call frame is
popped off the stack.

The heap is different. It's this big wide open space where variables can live as
long as they'd like. Well, until someone comes along and deallocates them.
When programs allocate memory on the heap, then it has to be deliberately
deallocated later. The heap gives us basically unbounded memory (up to
what's made available by your operating system) that can live for a long time.
The penalty is that that memory has to be managed (we have to deallocate it

sometime, not automatically when call frames get popped) and it is often less

efficient than memory on the stack1.

Managing Memory
Different programming languages have different ways of handling heap-
allocated memory.

The base level where the language gives you no help is manual memory
management. This is what you get in C and C++, where you have to explicitly
allocate and deallocate memory. In C, these functions are malloc to allocate
memory, free to release it, and realloc to resize some allocation.

With manual memory management, you have all the power but you also have
all the problems. This technique is where we get vulnerabilities like buffer
overflows leading to remote code execution, or issues with use-after-free
which can wreak all sorts of havoc. With great power comes great
responsibility.

The highest amount of help is in languages with automatic memory
management. This is what you see in most programming languages. There
are a few forms, the two most common are (tracing) garbage collection (as
you see in Java and Go, for example) and reference counting (as you see in
Python and Swift, for example). These techniques largely handle memory
management for you so you don't have to think about it, and you avoid some
major problems with manual memory management. Notably, you cannot have
use-after-free issues, and it's usually harder to have buffer overflows lead to
arbitrary memory access, since the runtime checks for that.

Rust is a special language. It doesn't employ automatic memory management,
but it also avoids the pain and problems that manual memory management
brings. You get all the power of manual memory management, and
usually don't have to worry about it at all. It does this by keeping track of
"ownership" of memory (we'll talk about this in the next section) and the
lifetimes of memory, and deallocating memory automatically when it won't be
used anymore.

Rust also places some restrictions on what you can do to make this feasible.

References and Pointers
When we talk about memory management, we're talking about how much
memory we have, where it is, and (to an extent) what it represents. This leads
us to a type we haven't talked about yet: references. (And their cousins,
pointers.)

References are found in most languages, but they're not usually called out as

such. It's a concept hidden below the surface2.

A reference is just a way of referring to a variable (or memory) at another
location. So if you have a variable x , then a reference to x would be written
&x , and is a way of letting you access x . To access the underlying value, you

dereference it, which you write as *x .

This is a little abstract, so let's see it in action.

Rust will also automatically dereference references for you, so usually you can
omit the * dereference operator:

Pointers have the same underlying representation as references: both hold an
address to another place in memory. But while a reference refers to a variable
at another location, a pointer is just an address in memory. This means that
unlike with references, Rust doesn't make guarantees about what a pointer

// First create a variable, x
let x: u32 = 10;

// Then create a reference to it:
let ref_x: &u32 = &x;

// Then print out the reference!
println!("x = {}", *ref_x);

// Print out the value without explicitly dereferencing it
println!("x = {}", ref_x);

can do, so you have to use unsafe Rust to use it and access memory at that
location.

You generally don't need to use pointers in Rust unless you're doing
something very specific, and using them entails using unsafe Rust. It's good to
know of them, but we won't go into the details on how to use them at all.

Allocating on the Stack or on the
Heap
To allocate on the stack, you don't do anything special. Any local variable is
allocated on the stack, since it's part of the call frame for the function you're
in.

To allocate on the heap, you have to use a type that causes heap allocation.
We'll talk about that in the next section!

Exercises:

1. In your own words, what is the difference between allocating on the
heap and on the stack?

2. In your own words, what is the difference between a reference and
a pointer?

These exercises are particularly challenging due to how abstract the
concepts are when you haven't put them in practice. Be kind to yourself!

1 Why this is is a bit out of scope, but it's due to memory locality and how things get
retrieved. The variables in the stack will likely already be in the CPU cache when the
related code is executing, but you have to do a slow fetch from main memory for heap
memory, since the CPU can't predict well what you're going to need.

2 This is one of the things I greatly appreciate about Rust: it doesn't hide these
fundamental concepts, so while there's more work to understand things up front before

you use the language, you can rest confident that you better understand what's
happening, and there's less unexpected behavior.

Heap Allocation
Sometimes you need to allocate something on the heap. Maybe you don't
know its size at compile time, or you need it to live independently of the scope
it's in. When you want to allocate something on the heap, there are a few types

you can use to do so1.

Boxed values
The most basic, fundamental heap allocation is using Box .

A boxed value is simply one that lives on the heap instead of the stack. A Box
is a boxed value, and it's generic: a Box<u32> is a u32 that's heap-allocated,
and a Box<f64> is a 64-bit float that's heap-allocated.

To construct one, you use the Box::new constructor. Often the compiler can
infer what type the Box has, but if not, you have to provide type annotations.
Here are two ways to do that:

To move a value back onto the stack, out of the box, you can dereference it:

Vecs
Sometimes you just need to build a list of things. You do this with Vec , which
is the type for dynamically sized arrays in Rust. (Rust's arrays are of fixed size.)

let x: Box<u32> = Box::new(42);
let y = Box::<f64>::new(4.2);

let x: Box<u32> = Box::new(42);
let y = *x; // y is now a u32 on the stack

You can also do it inline, using the vec! macro:

You can also iterate over the elements of a Vec:

Other collection types
The standard library has a variety of other collection types, which are helpful
for just about anything you need. The std::collections docs have a lot of
information about the types available and when you would want to use each.

As a sampling:

Vec

HashMap and BTreeMap
HashSet and BTreeSet

We won't go into the details on this page.

Exercise: Write a small program which constructs a HashMap with pirate
ship names as keys and their crew sizes as values. For example, "Black
Pearl" could have 3 crew members. Iterate over the elements of the
hashmap and print each ship with its crew size.

let mut parrots: Vec<&str> = Vec::new();
parrots.push("Shivers");
parrots.push("Tweety");
parrots.push("Dinner");
println!("parrots: {:?}", parrots);

let parrots = vec!["Shivers", "Tweety", "Dinner"];
println!("parrots: {:?}", parrots);

let parrots = vec!["Shivers", "Tweety", "Dinner"];
for parrot in parrots.iter() {
 println!("{} says hi.", parrot);
}

https://doc.rust-lang.org/stable/std/collections/index.html

1 You can also use raw pointers and unsafe Rust. We're not going to talk about that
here, because you should almost always avoid it.

Ownership and Lifetimes
And now we come to one of the things that differentiates Rust from other
systems languages. From other languages in general, really. And that is
ownership and the borrow checker.

As we went over earlier, Rust does not have a garbage collector. Instead, the
compiler is tracking when memory should be allocated and deallocated, and
ensuring that your references remain valid.

How it does that is by keeping track of the lifetime of variables as well as their
ownership. To unpack those, in short:

A value has one owner at a time, and ownership is used for tracking
when memory is valid and when it is dropped.
The lifetime of a variable is the time during which references to it are
valid.

These two concepts are highly related. The lifetime of a reference is linked to
the lifetime of its owner.

To make it concrete, let's look at an example of a function which explains why
we need lifetimes. This code example will not compile:

Here's another example, where we try to return a reference to a local variable
inside a function.

Rust rightfully presents us with an error there if we try to compile it. Whoops!

This might be your first interaction with the borrow checker. It's a vital piece of
Rust machinery which helps prevent major issues. Notably, you could get both
of the previous examples to compile in languages like C or C++, leading to use-

after-free errors. With Rust, you can't do that1.

Lifetimes
Every reference is a borrow, and each borrow has a lifetime. That lifetime
spans from when the variable is created to when it is destroyed.

What the borrow checker does is it ensures that each reference's lifetime is
wholly contained by the borrowed value's lifetime.

{ // create an outer scope

 // define a reference to a u32, but do not initialize it
 let outer_ref: &u32;

 { // create an inner scope

 // declare and initialize a u32
 let inner_val: u32 = 10;

 // try to assign a reference to the inner val to our ref
 outer_ref = &inner_val; // <-- this line will fail to compile

 } // <-- inner_val goes out of scope here

 // <-- but the compiler needs outer_ref to be valid here!
 println!("outer_ref value: {}", outer_ref);
}

fn naughty_function() -> &u32 {
 let x: u32 = 10;
 &x
}

Lifetimes can be explicitly given names. These are typically 'a , 'b , etc. but
you can also use longer descriptive names.

This example also introduces generics, which we will only use for lifetimes until
we cover them in more depth. But basically, the <'a> is for generics, and here
it's giving a generic lifetime. This says that we have some lifetime, 'a , and our
parameter x is a reference of that lifetime. It doesn't say specifically how long
that lifetime is, because we don't know anything about that lifetime until it's
filled in as a parameter of the generic function.

The lifetime 'static means "referred to data will live for the duration of the
program". This is often used for string constants:

Anywhere where you write a type annotation for a reference, you can also
include an explicit lifetime. We've seen one example of this above. You'll see it
often for structs, enums, and other data structures when they contain
references. You will not see it often for functions, because of lifetime elision.

Lifetime elision is when we're allowed to omit the explicit lifetimes and just let
the compiler take a guess (based on a few rules). The above example would be
better written using implicit lifetimes:

We won't unpack the lifetime elision rules here, but in general you can omit
explicit lifetime names in most places. If you can't, the compiler will tell you,
and you can try adding them!

fn example<'a>(x: &'a u32) {
 let y: &'a u32 = &x;
}

let msg: &'static str = "hello, world!";

fn example(x: &u32) {
 let y: &u32 = &x;
}

Ownership
Ownership is related to lifetimes, and we can see a few examples of it. Each
variable has an owner, and this ownership can be moved to another place. This
happens if you pass something by value: the new place receives the value and
promises that it will deallocate it when it needs to. But since the new place
owns it, the old place is not allowed to use it anymore!

Here's one example that shows a value moving to a new owner, one that new
Rust programmers often encounter:

This looks totally reasonable, but there's a problem: When we iterated over
xs , since we used the value of xs , we moved it, and we don't own it anymore!

This example does not compile.

Instead, we need to use a reference to let the for loop borrow the Vec, and then
we can use it in both places:

Now it works, woohoo!

That's the basics of ownership. Just remember that when you pass a value
around, it moves the value to the other place.

Well, that's not true. It moves it if it can't copy it.

let xs = vec![1,2,3];

for x in xs {
 println!("{x}");
}

println!("total len: {}", xs.len());

let xs = vec![1,2,3];

for x in &xs {
 println!("{x}");
}

println!("total len: {}", xs.len());

There are some variables, the simplest ones, which "are Copy", which means
they implement the Copy trait. If something is Copy, then it will get copied
instead of moved, and you can keep using it.

As an example, we can use a primitive u32 twice:

Are you a little confused? If so, you're not alone! This isn't very clear, and the
same syntax doing two different things implicitly can be tricky. But rest
assured that this is understandable, and the compiler is here to help. If we go
back to the first Ownership example and try to compile it, here's part of the
error message:

In here, it clearly tells us that the Vec was moved, why it was moved, and later
on in the error message (which I cut off) it gives a suggestion for how to fix it
(using a reference). We'll talk more about ownership in the next section on
closures.

1 The borrow checker places a lot of restrictions on you. As a result, it's common to hear
people refer to "fighting with the borrow checker." I like to think of it as getting a code
review from an eager and extremely pedantic partner. It can be quite frustrating the
first few times you run into it, but with time it becomes an invaluable part of your
workflow. It's catching legitimate issues, and you should be scared working in languages
without it!

let x: u32 = 10;
println!("x is {x}");
println!("x*2 is {}", x*2);

3 | let xs = vec![1,2,3];
 | -- move occurs because `xs` has type `Vec<i32>`, which does not
implement the `Copy` trait
4 |
5 | for x in xs {
 | -- `xs` moved due to this implicit call to `.into_iter()`
...

Closures
Previously, we looked at named functions and we looked at ownership. In Rust,
we also have closures, which give us the ability to make anonymous functions.

You can make a closure with explicit or inferred types:

The basic syntax for a closure is to use pipes around the parameter list
followed by an expression for the return value. Sometimes you'll see a no-
argument closure, which looks like it's using the or-operator (||) but that's
the empty parameter list here, and could be written with spaces for clarity (|
|).

Closures can reference values from their outer scope, which is really handy.
They can also capture the outer values and use them. This is handy for things
like counters:

Note that the closure must be mut if it captures a mutable variable. This is
because what it captures is part of the closure, so if it's mutating it then it's
mutating itself.

let y: u32 = 10;
let annotated = |x: u32| -> u32 { x + y };
let inferred = |x| x + y;

println!("annotated: {}", annotated(32));
println!("inferred: {}", inferred(32));

let mut count = 0;
let mut increment = || {
 count += 1;
 count
};

println!("count is {}", increment());
println!("count is {}", increment());
println!("count is {}", increment());

You can also return closures from functions! To do this, if you capture
variables, you'll need to move the variables into the closure. You do this with
the move keyword, which signals to the compiler that it should take ownership
of its arguments, so that the closure cannot outlive its arguments.

Here are two examples of that in action. First, a closure which prints a
message. This one has to explicitly annotate its lifetime, including on the
return type.

The way you would use it is by calling it to get a function, then calling that
function.

And one which makes a counter.

Invoking it is similar, but this time, it has to be mutable.

fn print_msg<'a>(msg: &'a str) -> impl Fn() + 'a {
 let printer = move || {
 println!("{msg}");
 };
 printer
}

// this line creates a new function, f
let f = print_msg("hello, world");
// nothing has been printed yet

// and this line invokes the function, which will print our message
f();

fn make_counter() -> impl FnMut() -> u32 {
 let mut count = 0;
 let increment = move || {
 count += 1;
 count
 };
 increment
}

You'll notice the return types for these functions are different. What they
return is an impl of a trait. We'll get to what traits are in a later section; for
now, you can think of them like interfaces, so we know what we can do with the
thing, but not its specific type.

There are three traits for functions: Fn , FnMut , and FnOnce , which provide
various restrictions on how the caller of the function can use it. The other
thing you'll notice is the impl keyword, which is new. This says we'll return
something which implements this trait (like an interface in other languages),
but we don't specify exactly what it is. This is how you return closures,
generally, because each closure is its own type.

There are good docs on these traits, as usual. In short, the restrictions are:

Fn can be called be called multiple times, and it doesn't modify its
underlying state.
FnMut can be called multiple times, but it may mutate itself when you do

(so it needs a mutable reference to itself)
FnOnce can be called once. It consumes itself in that call, and you can't

use it a second time.

If you have an Fn , you can use it as FnMut or FnOnce . And you can use FnMut
as FnOnce . But you can't go back up the chain!

Exercises:

1. Write a closure which takes in two numbers and adds them
together.

2. Write a function which takes in an initial value and an increment and
returns a closure which increments the value by that amount each
time it's called.

let mut counter = make_counter();

println!("count is {}", counter()); // prints 1
println!("count is {}", counter()); // prints 2
println!("count is {}", counter()); // prints 3

https://doc.rust-lang.org/std/ops/index.html

Thanks for following along so far! You've gotten through what I think are the
hardest parts of Rust. The rest should be easier, and you should be able to put
this into practice. Take a breather, then move on to the next section.

Structs
Structuring your data is a key part of programming, and every language worth
its salt gives you a way to do that. In object-oriented languages, this is usually
by creating a class. In Rust, you structure your data with structs.

A struct is a named grouping of fields (data belonging to the struct), which also
can have methods on it. Let's unpack that.

When you're creating a struct, first you have to give it a name:

Then you can also put fields on it, of any type:

And you can have methods on the struct by using an impl block. Those
methods can take a reference to self (&self) if they are just reading fields, or
they can use a mutable reference (&mut self) if they will be changing any data.

struct PirateShip {
}

struct PirateShip {
 captain: String,
 crew: Vec<String>,
 treasure: f64,
}

To create an instance of a struct, you give the name of the struct along with a
value for each of the fields, specified by name (like treasure: 64.0). There is
also some shorthand to use: if you have a variable in scope with the same
name as one of the fields, you can specify that just by name. That's confusing
without an example, so let's see it in action.

In this example, we can see both forms of specifying fields. The captain and
treasure are specified with the <name>: <value> form, while the crew is
specified with the shorthand that means crew: crew .

Note that in this example, we used the method to_owned a few times. This
takes a reference to a string (&str) and creates an owned string (String), so
that we don't have to worry about lifetimes. The precise details of this aren't
particularly relevant in this chapter, but it's a nice thing to keep in mind: if you
want to avoid including lifetimes, you can use owned instances by cloning (or a
method like to_owned). There's more complexity with strings in Rust than in

impl PirateShip {
 pub fn count_treasure(&self) -> f64 {
 // some computations probably
 self.treasure
 }

 pub fn mutiny(&mut self) {
 if self.crew.len() > 0 {
 // replace the captain with one of the crew
 self.captain = self.crew.pop().unwrap();
 } else {
 println!("there's no crew to perform mutiny");
 }
 }
}

let blackbeard = "Blackbeard".to_owned();
let crew = vec!["Scurvy".to_owned(), "Rat".to_owned(),
"Polly".to_owned()];
let ship = PirateShip {
 captain: blackbeard,
 crew,
 treasure: 64.0,
};

other languages due to references and lifetimes, but further treatment of
them is beyond the scope of this course.

Exercises:

1. Define a struct for a crew member with a name, age, and any other
attributes you would like.

2. Implement a few methods on this struct, such as one to say who it
is.

Enums
Many languages let you create enumeration types. Typically, these are
shorthand for constants, so you can have a few different values that you know
it's coming from. A common example would be days of the week.

In Typescript, an enum for days of the week would look something like this1:

These are pretty straightforward in most languages, and useful but not earth-
shattering.

Rust enums are far more powerful and are a key tool in structuring data and
programs well. You use them almost everywhere (indirectly, through Option
and Result) for error handling and type safety.

What makes Rust enums more powerful is that they capture more than just a
constant. Each variant of the enum can also have data.

If you're familiar with C, a Rust enum is equivalent to a tagged union. If you're
not familiar with C, which is probably more likely if you're reading this, we'll
unpack that and explain how enums are represented in memory. But first we'll
see some examples of using them.

Defining and Using Enums
An enum has a name and it has variants. Each variant can either be a "unit"
enum or it can have data associated with it. Additionally, there are two ways

enum WeekDay {
 Monday = 0,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Sunday
}

you can add data for a variant: positionally, or with named fields.

Let's define an enum with one of each of these types of variants to see them in
action. This will just be a silly made-up example.

To write create an instance of an enum, you instantiate one of the variants.
You refer to it using the enum name and the variant name, separated with :: .

Let's see examples of creating each of the previous variants, and then
accessing their fields:

When you have an instance of an enum, you can use it with pattern matching
(to directly look at the fields and use them), or you can use methods on the
enum. One of the most common enums you use in Rust is Option , which is
defined something like this:

enum LanguageResource {
 // This variant has a field by position; in this case, it's
probably the URL
 Website(String),

 // This variant has fields by name
 Book { title: String, pages: u64 },

 // This is a unit variant, with no data contained
 SelfTeaching,
}

let site = LanguageResource::Website("https://yet-another-rust-
resource.pages.dev/".to_owned());
let book = LanguageResource::Book { title: "The Rust Programming
Language".to_owned(), pages: 300 };
let independent = LanguageResource::SelfTeaching;

println!("the site is at {}", site.0);
println!("the book {} is {} pages long", book.title, book.pages);

Then to use it you can either use methods (in this case, defined by the
standard library) or pattern matching. Here is an example using both ways to
accomplish the same thing:

And just like with structs, you can define your own methods on an enum you
create.

Let's wrap this up by implementing the is_some function for our own Option
type.

// the `<T>` just says we take a generic type, so the Option can
contain anything
// we want instead of having to define a new type by hand for each
contained type.
enum MyOption<T> {
 Some(T),
 None,
}

let x = Some(3);

if x.is_some() {
 println!("x = {}", x.unwrap());
} else {
 println!("x is empty :(");
}

match x {
 Some(v) => println!("x = {v}"),
 None => println!("x is empty :("),
}

impl<T> MyOption<T> {
 pub fn is_some(&self) -> bool {
 match self {
 MyOption::Some(_) => true,
 MyOption::None => false,
 }
 }
}

Enum Memory Representation
As mentioned above, enums are akin to tagged unions in C. The memory
layout of these is pretty straightforward. Each enum has a "tag", which
represents which variant it is holding, and then it has enough bytes to hold the
largest variant.

The upshot of this is that no matter what variant your instance is, it will be as
large as the largest variant, plus a bit extra for the tag.

How large is the tag? It can be as small as one byte, if you have fewer than 255
variants (if you have more, you need a larger tag) and if the alignment of the
type is 1. We won't go into how to determine what the alignment of your type
is but it's a great topic to explore on your own.

Why not just use a struct?
What's the reason we'd like to have an enum with data, instead of just a
struct? What's special about doing Result as an enum?

There are a few main reasons you want to do it as an enum, and why you
cannot always use a struct:

1. It allows a more compact memory representation. A struct requires the
memory of all its fields, and if you have fields that are present in some
arms of the enum but not others, you'd pay for those always. In contrast,
an enum only requires as much memory as its largest variant, plus a byte
(or word) for its tag. So this can save a serious amount of memory! And
for things like Option of a reference, it can even be free, because the
compiler can do tricks to reuse memory in the pointer itself.

2. It allows you to do pattern matching, which you cannot do on a struct
with private members.

3. You can enforce things at compile time, like which fields are or are not
set, rather than enforcing populating fields through logic at run time.

Exercises:

https://doc.rust-lang.org/reference/type-layout.html

1. Write an enum which represents days of the week.
2. Look up the standard library Result type and write a basic

implementation of it. Refer to our Option implementation for a
similar example.

1 Weeks start on Mondays, not Sundays. Fight me.

More Control Flow
There are a couple of control flow constructs we skipped over earlier, because
they rely on some concepts we didn't have. Namely, you can combine pattern
matching with if and while . This comes in really handy when you want to do
something only for a particular variant.

Here's a contrived example of retrieving something from a map, and doing
something different in each case.

The general setup is that you put a variant on the left hand side inside an if
let , and if the match can be satisfied (if it works), then it'll fill in the
placeholder variables. If that match doesn't succeed, then you fall through to
the else case.

The same thing works in loops. One common use is with iterators, but you can
use it with any enum. (I see this used a lot less than if let .)

// let's just pretend we got this from a map, okay?
let value = Some(42);

if let Some(inner) = value {
 println!("inner was {inner}");
} else {
 println!("this is the failure case!");
}

let values = vec![1, 2, 3, 4, 5];
let mut iter = values.iter();

while let Some(v) = iter.next() {
 println!("v = {v}");
}

Modules
Modules allow you to structure code in a maintainable way, so you don't end
up with everything in one giant file. They also let you hide details so that
consumers of your code don't rely on internal implementation details.

Creating modules
You declare modules with the mod keyword, and then you can include them
from one of three places:

Directly with a block delimited by curly braces
In a file at the same level with the name of the module
Inside a folder with the module name, in the file mod.rs

Modules can also be either public (pub mod) or private (mod). If they're public,
anyone consuming your crate can use the module and its pub members.
Otherwise, private members are accessible only to themselves and their
descendants.

Let's say you're creating a module called math . Then inside your current
module (starting from main.rs or lib.rs , unless you're nested inside
another module already) you would create this module. Let's assume you're
working in main.rs for the sake of these examples, but it's the same either
way.

If you want to break it out into other files, you can do that. You still declare the
module in main.rs or your other file:

// in main.rs
pub mod math {
 // look, I didn't say this was a *useful* module
 pub fn add(x: u32, y: u32) -> u32 {
 x + y
 }
}

And then you put the contents in either math.rs or math/mod.rs , depending
on your preference. Usually it's clearer to use the math.rs style over
math/mod.rs , because otherwise your editor can be filled with a lot of mod.rs

files and it's not clear which one you're working on!

And that's all there is to creating modules!

Using modules
To use what's declared in another module, you use the use keyword. This
brings things into scope. (If you want to re-export them, you can pub use
them.)

If you refer to super::thing , that gets thing from the parent module.

If you refer to crate::thing , that gets thing from the root of the crate you're
in.

pub mod math;

pub fn add(x: u32, y: u32) -> u32 {
 x + y
}

use std::collections::HashMap;

Testing
Everyone's favorite topic! Writing tests!

It's actually pretty exciting with Rust, since you have good tools to make
testing pretty easy. It's all built-in out of the box.

Unit tests
The typical way to write tests with Rust is to create a child module called test ,
import from the parent, and test things. These are written in a way that they're
only compiled if a flag is enabled for tests, so they're not included in your
release builds. Handy!

Let's see an example.

We'll go back to the same example we had of a super useful addition function.
Then we can write a test to make sure it adds things correctly.

Then to run the tests, you run cargo test and it should find and execute all
your tests (or your compile errors).

Integration tests
Just as with unit tests, you can write integration tests. The main difference is
that these tests can only consume the public API that you provide.

Any file you put in the tests/ directory will be treated as an integration test.

Let's say you have your plus function in a crate, then you could open
tests/my_test.rs and write:

pub fn plus(x: i32, y: i32) -> i32 {
 x + y
}

// this cfg says "only compile this if the test compile option is on"
#[cfg(test)]
// by convention we call this "tests" but it doesn't need to be
mod tests {
 // usually you avoid importing all, but it's idiomatic for tests
 use super::*;

 // this is how we mark this function as a test
 #[test]
 fn adds_small_numbers() {
 let x = 10;
 let y = 20;
 let expected = 30;
 assert_eq!(plus(x, y), expected, "should add up correctly");
 }

 // this test WILL FAIL because the integers roll over
 #[test]
 fn adds_big_numbers() {
 let x = 2_000_000_000;
 let y = 2_000_000_000;
 assert!(plus(x, y) > 0, "result should be positive");
 }
}

Doc tests
Rust also gives you facilities to write tests directly in your documentation. You
can put a docstring on a function, module, etc. with /// (as opposed to the
usual // to start a comment). If you put code blocks (with the markdown style
```), it will be compiled and run when you run cargo test . (This also has the
neat side effect of making your documentation code examples automatically
break the build if they are out of date!)

Here's an example for, again, our plus  function.

use my_library::plus;

#[test]
fn test_addition() {
    assert_eq!(plus(10, 20), 30);
}

/// Adds together two numbers, and doesn't handle rollover.
///
/// ```
/// use playground::plus;
/// assert_eq!(30, plus(10, 20));
/// ```
pub fn plus(x: i32, y: i32) -> i32 { x + y }



Linting and Formatting
There are two main canonical tool for formatting and linting Rust code. The
first is cargo-fmt , the formatter. The second is clippy , the linter.

To run the formatter, just run cargo fmt . That's it.

To run the linter, run cargo clippy  after installing it one time. Clippy is very
helpful at suggesting idiomatic code, and it improves over time (read: it will
sometimes come back and find things in code that you thought was fine last
month). It's invaluable as both a Rust learner and as an experienced Rust
programmer, and it's usually good practice to treat Clippy warnings as errors
(with specific exceptions annotated in the code if merited).

There are various options to configure these tools. I suggest using them
vanilla for a while, if not forever. It keeps things consistent across the Rust
ecosystem, and the suggestions are usually there for a reason. But if you do
want to configure things, you can dive in!

https://doc.rust-lang.org/stable/clippy/installation.html


Dependency Management
While Rust has a relatively early ecosystem of libraries, it is a strong ecosystem
for a variety of domains. The main place you find a crate is on, fittingly,
crates.io.

After you search for a crate on there, and you want to add it, you can run a
simple command. For example, to add the popular serialization/deserialization
crate serde, you would run

This would add the latest version. If you want to add it manually, you can
specify the version in Cargo.toml  with a line like serde = "1.0.154" .

The version you specify is matched with semver. To avoid just repeating the
docs, I refer you to the official docs if you want to do something more
advanced or want to understand how it's handling version matching.

cargo add serde

https://crates.io/
https://crates.io/crates/serde
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html


Traits
Traits are much like interfaces in other languages. They give a way of defining
shared behavior and a way of using said shared behavior.

At its base level, a trait is a collection of methods. The type that the methods
belong to is unknown, because that's part of the implementation: the trait gets
implemented for a given type.

The methods can either be abstract (must be implemented in order to
implement the trait) or they can be implemented, using only the type
information you have. Namely, these would use other methods on that trait.

Defining a trait
Since a trait is a collection of methods, we give those methods as the definition
of the trait. For example, we can define a trait for a key-value store.

We know that any key-value store will be able to set a value and get it again.
Those are the base primitives, but what if we want another operation, like get-
and-set? As long as it's expressible in terms of just other methods on the
KeyValueStore, we can do an implementation of that on the trait itself!



One thing to note is that the methods on a trait are all public! You don't have
to put a visibility modifier, pub , on them because they're by default visible.

Implementing a trait on a type
Now let's look at how to implement a trait on a type. After you've defined a
trait, and a struct, you impl  the trait.

For example, let's say we make a trait called Printable  with a print  method.
We will also create a struct to implement the trait.

trait KeyValueStore {
    // These ones have to be implemented by structs which impl 
KeyValueStore
    fn set(&mut self, key: &str, value: Vec<u8>);
    fn get(&self, key: &str) -> Option<Vec<u8>>;
    fn lock(&mut self, key: &str);
    fn unlock(&mut self, key: &str);

    // This one is defined for all KeyValueStores
    fn get_and_set(&mut self, key: &str, value: Vec<u8>) -> 
Option<Vec<u8>> {
        self.lock(key);

        let old_value = self.get(key);
        self.set(key, value);

        self.unlock(key);
        old_value
    }
}



There is one other way you can impl a trait, and it's pretty incredible. You can
tell the compiler to derive the implementation. This is only doable for traits
that implement some auto derive functionality.

A lot of the built-in traits, like Debug  and PartialEq , can be derived. Here's
how you derive those for a simple struct containing a string and a number:

Note: You can impl any trait on a type that you define. And you can impl a trait
that you define on any type. But you cannot impl a trait that you didn't define
on a type that you didn't define. This prevents having multiple impls of the
same trait on the same type if different crates both impl it.

Using traits
There are a few ways you can use a trait. You can use methods from the trait
on a struct that impls the trait. Or you can accept the trait as a parameter to a
function, or return it as the return type. (You can also use them as part of
generics; we'll cover that with generics.)

trait Printable {
    fn print(&self);
}

struct Ship {
    name: String
}

impl Printable for Ship {
    fn print(&self) {
        println!("<Ship name=\"{}\">", self.name);
    }
}

#[derive(Debug, PartialEq)]
struct PirateShip {
    name: String,
    masts: f32, // float since you can have part of a mast
}



Calling methods from traits

To call a method that's on a trait, you have to use  that trait to make it visible.
This is mostly so that you don't have collisions from traits with the same
methods on the same type.

As an example, there's a trait in the standard library called Read . It lets you
read bytes from a source. Lots of types impl Read, and one that does is &[u8] ,
but you can't use it unless you use  it.

This example won't compile:

But by bringing std::io::Read  into scope, it does compile!

If you run into a situation where a method seems like it should be on a type
but your tooling or the compiler are saying it isn't, look at if you're missing a
use  somewhere.

Traits as parameters

If we know that a function only needs something that implements a trait, we
can pass it in with impl . Let's say we're writing a function which needs a key-
value store, but we don't care which one. Then we can write this function to
accept any key-value store:

let mut s: Vec<u8> = "sad example".into();
let mut buf: [u8; 32] = [0; 32];
(&s[..]).read(&mut buf);

use std::io::Read;

let mut s: Vec<u8> = "sad example".into();
let mut buf: [u8; 32] = [0; 32];
(&s[..]).read(&mut buf);



Code that passes in a type that doesn't impl KeyValueStore will not compile,
and you can be sure that this will work. At compile time, the type is resolved to
be the concrete type.

Traits as return types

You can also use the impl keyword for return types to specify that you're
returning a value that impls the trait. For example, you could define something
that returns a KeyValueStore:

The thing to note is that the function can only return one type. If you have
multiple implementations of the trait, you cannot have one branch which
returns type A and one which returns type B. At compile time, the compiler
needs to be able to swap out impl KeyValueStore  for the one specific type
which you're going to return.

Exercises:

1. Go back to our pirate ship struct. Based on this, define a trait for
any sort of Vessel , which has one method: mutiny .

2. Implement Vessel  for PirateShip .
3. Create a new kind of vessel ( NavalShip ?) and implement Vessel  for

it.

fn save_record(kv: &impl KeyValueStore) {
    // use the key value store somehow
}

fn create_in_memory_kvstore(config: Config) -> impl KeyValueStore {
    // create and return the KeyValueStore
    todo!()
}



Generics
Generics are an essential feature of Rust, allowing you to write reusable code
that works with multiple types without sacrificing performance. They let you
write code that works with a variety of types without duplicating code.

What are Generics?

Generics are a way to write code that accepts one or more type parameters,
which can then be used within the code as actual types. This allows the code to
work with different types, while still being type-safe and efficient.

In Rust, generics are similar to templates in C++ or generics in Java, TypeScript,
or other languages.

Using Generics

To illustrate how generics work in Rust, let's start with a simple example.
Suppose you have a function that takes two arguments and returns the larger
of the two. Without generics, you'd need to write a separate function for each
type you want to support, e.g., one for integers and one for floating-point
numbers.

However, using generics, you can write a single function that works with any
type that implements the PartialOrd  trait. Here's an example:



In the max function definition, we introduce a generic type parameter T using
angle brackets ( <> ). We also specify the trait bound PartialOrd for T  using
the colon syntax ( : ). This constraint ensures that the max function only works
with types that implement the PartialOrd  trait, which is necessary for
comparing values using the >  operator.

Tip: It can be hard to know what trait bound you need, especially when new to
Rust. One of the things I like to do is leave it out entirely, then let the compiler
tell me which trait bound it thinks is missing. This works a surprising amount
of the time, especially for simple cases.

Now, the max function works with both integers and floating-point numbers.
As an added bonus, you can call it with any two values of the same type that
implement the PartialOrd trait. So it will even work for strings, or types that
you don't even know about! Pretty neat and pretty powerful.

fn max<T: PartialOrd>(x: T, y: T) -> T {
    if x > y {
        x
    } else {
        y
    }
}

fn main() {
    let a = 5;
    let b = 10;
    let c = 3.14;
    let d = 6.28;

    println!("Larger of {} and {}: {}", a, b, max(a, b));
    println!("Larger of {} and {}: {}", c, d, max(c, d));
}



Generic Structs

In the Point  struct definition, we introduce a generic type parameter T  using
angle brackets ( <> ). This allows us to use the same Point  struct with different
types for the x  and y  coordinates.

Note that in this example, both coordinates must have the same type. If you
want to allow different types for x  and y , you can introduce multiple generic
type parameters:

Here we have left the types unbounded, but you would likely want some trait
bounds for these generic parameters. PartialOrd, PartialEq, and Debug are
common choices.

struct Point<T> {
    x: T,
    y: T,
}

fn main() {
    let integer_point = Point { x: 5, y: 10 };
    let float_point = Point { x: 3.14, y: 6.28 };

    println!("Integer point: ({}, {})", integer_point.x, 
integer_point.y);
    println!("Floating point: ({}, {})", float_point.x, float_point
}

struct Point2<X, Y> {
    x: X,
    y: Y,
}

fn main() {
    let mixed_point = Point2 { x: 5, y: 6.28 };

    println!("Mixed point: ({}, {})", mixed_point.x, mixed_point.y);
}



Generic Enums and Traits

You can use generics with enums and traits in a similar way as with structs and
functions. Here's an example of a generic Result  enum that can be used to
represent the success or failure of a computation (in fact, this is how the
standard library type is defined):

In this example, we define a generic Result  enum with two type parameters:
T  for the success value and E  for the error value. The Result  enum has two

variants: Ok(T)  for success and Err(E)  for failure.

We then define a divide function that returns a Result<f64, String> . The
function takes two f64  arguments and either returns the result of the division
or an error message if the divisor is zero.

enum Result<T, E> {
    Ok(T),
    Err(E),
}

fn divide(x: f64, y: f64) -> Result<f64, String> {
    if y == 0.0 {
        Result::Err("Cannot divide by zero.".to_string())
    } else {
        Result::Ok(x / y)
    }
}

fn main() {
    let result = divide(5.0, 2.0);
    match result {
        Result::Ok(value) => println!("Result: {}", value),
        Result::Err(error) => println!("Error: {}", error),
    }

    let result = divide(5.0, 0.0);
    match result {
        Result::Ok(value) => println!("Result: {}", value),
        Result::Err(error) => println!("Error: {}", error),
    }
}

https://doc.rust-lang.org/stable/std/result/enum.Result.html


In the main function, we call the divide function and pattern match on the
returned Result  to handle both the success and error cases.

This Result  enum is a simplified version of the Result type that is part of the
Rust standard library, which is used extensively for error handling.

Exercise: Write a generic divide  function. (Hint: look up the
std::ops::Div  trait.)



Error Handling
Error handling is an essential aspect of any programming language, and Rust
is no exception. Rust provides robust error handling mechanisms, like the
Result  type and the ?  operator, which allow you to deal with errors in a clean

and idiomatic way. And you can also bail out for unrecoverable errors with
panics.

The Result Type

Rust has a built-in Result  enum for handling errors in a type-safe manner.
The Result  type is defined as follows:

The Result  enum has two variants:

Ok , which represents a successful operation and contains the result
value
Err , which represents a failed operation and contains the error value

The Result  type encourages you to handle errors explicitly and provides a
clear separation between the success and error cases. This is one of the things
that makes Rust so powerful for writing robust code: You can't forget to
handle errors, the type system will require that you address them.

You can use pattern matching to handle the different variants of the Result
type:

enum Result<T, E> {
    Ok(T),
    Err(E),
}



You can also use unwrap  or expect  if you know the returned value is an Ok.
But you have to be very sure: if you unwrap an Err, your program will panic!
This is okay in instances like missing configuration where you don't want the
program to run at all if it isn't there, but you have to be deliberate. As a
general rule, don't use unwrap  or expect  unless you want the program to
crash if it fails.

The ? Operator

While pattern matching on Result  values is powerful, it can become verbose
when dealing with multiple operations that may return errors. To simplify
error handling in these situations, Rust provides the ?  operator. It's only
usable when you're expecting to return a Result value, and in those cases is
tremendously helpful.

The ?  operator, when placed after an expression that returns a Result ,
automatically handles the error case. If the expression returns an Err , the
function immediately returns the error value. If the expression returns an Ok ,
the ?  operator unwraps the Ok  value and continues executing the function.

Here's an example of using the ?  operator:

fn main() {
    let result = some_function();

    match result {
        Ok(value) => println!("Success: {}", value),
        Err(error) => println!("Error: {}", error),
    }
}

fn some_function() -> Result<String, String> {
    // ...
}



In this example, the read_config  function calls two other functions that return
Result  values. Instead of using pattern matching to handle the errors, the ?

operator is used to simplify the code. It elevates the "happy path" so that you
can read through that directly, and you know that errors will trickle up.

Panics

Rust has another mechanism for error handling called panics. A panic is a
runtime error that results in the immediate termination of the program.
Panics are reserved for exceptional situations where it's impossible or
undesirable to continue executing the program, such as an unrecoverable
error or a broken invariant.

You can cause a panic explicitly using the panic!  macro:

fn main() {
    match read_config() {
        Ok(config) => println!("Config: {:?}", config),
        Err(error) => println!("Error: {}", error),
    }
}

fn read_config() -> Result<String, String> {
    let file = read_file("config.txt")?;
    let parsed = parse_config(&file)?;
    Ok(parsed)
}

fn read_file(path: &str) -> Result<String, String> {
    // ...
}

fn parse_config(file_contents: &str) -> Result<String, String> {
    // ...
}



When a panic occurs, Rust unwinds the stack, running destructors for all
objects in scope and then terminating the program. Alternatively, Rust can be
configured to abort the program directly, without unwinding the stack.

Panics should be used sparingly and only in exceptional circumstances. In
most cases, you should prefer using the Result  type for error handling, as it
promotes explicit and robust error handling.

fn main() {
    let index = 10;
    if index > 5 {
        panic!("Index is out of bounds!");
    }

    // ...
}



Async/await
Asynchronous programming is an essential technique for writing efficient and
responsive code, especially when dealing with I/O-bound tasks or tasks that
may take a long time to complete. Rust provides an asynchronous

programming model through the async  and await  keywords1, which allow
you to write non-blocking code cleanly. The async and await pattern in Rust is
similar to that in other languages like Python and TypeScript.

In Python, you use the async def  syntax to define an asynchronous function,
and the await  keyword to call an asynchronous function:

In TypeScript, you use the async  keyword before the function definition, and
the await  keyword to call an asynchronous function:

Rust's async and await model works similarly to Python and TypeScript.

import asyncio

async def fetch_data():
    # ...

async def main():
    data = await fetch_data()
    print(data)

asyncio.run(main())

async function fetchData(): Promise<string> {
    // ...
}

async function main() {
    const data = await fetchData();
    console.log(data);
}

main();



Async and await

In Rust, the async  keyword is used to define asynchronous functions. An
asynchronous function is a function that can be paused and resumed later,

allowing other tasks to run concurrently2. Asynchronous functions in Rust
always return a Future . A Future  is a trait that represents a value that may
not be available yet but will be at some point in the future.

Here's an example of an asynchronous function in Rust:

If you invoke this function, you get back a Future. But the return type is Result,
not Future. That's because Rust hides that detail from us a little bit. Instead of
making us put Future  everywhere, we have a little friendlier syntax.

Just remember that when you invoke the function, it doesn't execute anything
until you await  it.

The await  keyword is used to pause the execution of an asynchronous
function and wait for a Future  to resolve. When a Future  is awaited, the
current task is suspended, allowing other tasks (such as the one you awaited)
to run concurrently. Once the awaited Future  resolves, the execution of the
suspended task resumes.

Here's an example of how to use the await  keyword to call an asynchronous
function:

In this example, the fetch_data  asynchronous function is called with the
.await  syntax. The main  function is also defined as asynchronous using the

async fn fetch_data() -> Result<String, String> {
    // ...
}

async fn main() {
    match fetch_data().await {
        Ok(data) => println!("Data: {}", data),
        Err(error) => println!("Error: {}", error),
    }
}



async  keyword.

Note that you can only use the await  keyword inside an asynchronous
function. If you try to use await  in a non-async function, you'll get a compile-
time error.

Async runtimes

To use async code, you'll need some sort of async runtime! The runtime is
responsible for scheduling tasks onto threads. The typical one people go for
these days is Tokio, but there are other options. And if you're ever feeling
ambitious, you can write your own!

1 await  looks like a method or field when you use it, but it's a keyword and is used in
syntax as such. It's a keyword the same way that match  is, but often feels like you're
calling a method, so it can be kind of confusing.

2 Even with a single-threaded async runtime, tasks are concurrent, although they may
not run in parallel.

https://tokio.rs/
https://doc.rust-lang.org/std/keyword.async.html


Other Resources
This course has just scratched the surface with Rust. You should be able to
pair, with some difficulty, with someone who is more experienced. But this is
not the end of the road. By the nature of this course and the size of Rust, we've
skipped a lot and skimmed over what we did cover.

Now you must go forth and keep learning and writing Rust code.

Here are a few paths forward from here.

Books!
The Rust Programming Language
Programming Rust, 2nd Edition
Rust in Action

Rust by Example
Rustlings, a set of small exercises

And nothing replaces getting your hands on the keyboard and writing code.

https://doc.rust-lang.org/book/
https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/
https://www.manning.com/books/rust-in-action
https://doc.rust-lang.org/rust-by-example/
https://github.com/rust-lang/rustlings


Credits
These resources were part of the inspiration for this course:

Rust by Example
Comprehensive Rust

This content was authored by Nicole, aka ntietz.

Acknowledgements
Huge thanks to these people who have provided invaluable feedback and
more throughout this process:

Cole Brossart
Jake Weiner
Dan Reich
Miccah Castorina

https://doc.rust-lang.org/rust-by-example/
https://google.github.io/comprehensive-rust/
https://ntietz.com/

